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ABSTRACT

Let (el,xl),...,(en,xn) be n simple samples drawn
from the population (8,X) which is a {1,2,...,8} x Rd-valued
random vector. Suppose that X is known. Let X! be the
nea:estlone among X;,...,X , from X, in the sense of
Euclidean norm or 2_-norm, and let ea be the 6-value paired
with XA. The posterior error probability is defined by
L, = p(eﬁf&l(elnxl),...,(en,xn)). It is well known that
ELn = p(eafe) has always a limit R. 1In this paper it is
shown that for any € > 0, there exist constants ¢ < =» and

bn

b > 0 such that P(|L -R|2¢) s ce” ", under the only assumption

that the marginal distribution of X is nonatomic.
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l. INTRODUCTION
tieta

t (¢,X) be a /(1,2,..)

S) x Rd-valued ranfom vector
7“}@.;"&

\'oo.' ‘ ) b ..o l d ’ .
33; «E;E?;} e ii samples drawn from (X, X)

¥ )
1h
used to predict the value ofcg. ‘One of the most frequently

used approaches is the nearest neighbouf discrimination
rule, which is defined as follows: Let ||¢|| be a norm in
Rd. Usually we take this norm being the Euclidean one or
lg-nprm. When X = x is given, we rearrange xl,...,xn
acco#ding to the increasing order of the distances

||X¥ - x||, namely,

llx -xllsllxnz-xl‘s“'s‘[xR -xlll

R1 n
ties are broken by comparing indices, for instance, if

Hxi - x|]| = ||xj - x|| and i < j, then X; is rearranged
before xj. In view of the rearrangement of X's, el,...,en
are rearranged as fp ,...,eR . Let k s n be a positive
integer. Then eék’, called ﬁ-NN discrimination, is defined
to be the value which has the biggest frequency among

G ]

Rl'...' Rk‘

take one such value with equal probability.

If such value is not unique, then we randomly

The probability of misdiscrimination and the posterior

one are defined to be
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1. 5.5 &

(k) (k) .
Rn = P(Gn ¥8) (l1.1)
/ and

(k) (k)
Ln = P(en #el(elrxl)r-o-r(enrxn))l 4 (1.2)

which are simply called error probability or posterior

error probability, respectively. For k = 1, XRI, 9;1)

Rél) and Lél) are simply denoted by xg, ea, Rn and Ln
respectively. For reviews of the literature on this topic,

the reader is referred to Cover and Hart (1967), Wagner (1971),
) Fritz (1975), Cover (1968), Devroye (1981), Bai (1984).

It was shown tﬁat whatever the distribution of (6,X)
k

- is, there is always a constant R, depending upon k, such
- that lim R(k) = Rk, and the constant Rk satisfies

n n

- R* s Rk S R ﬁ Rl < R*(z—ggin*), where R* is the error
; probability in Bayesian discrimination. Let
N
P,(x) = P(6=i|X=x), i = 1,2,...,S. (1.3)

Then it can be shown that

s 2
R=1- I EPi
i=1

(x). (1.4)

In Chen and Kong (1983), it was proved that when

S = Z'Ln L3 C for some constant C if and only if

(P(6=1 ,X=x) - P(0=2,X=2))2 P(8=1,X=x) P(0=2,X=x) = 0, (1.5)

and C = R. This implies that if the marginal distribution (
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F of X has no atoms, then Ln R But according to

EMT!LT{.'K'.\'(.T&TLTL’.{VK'\L‘TITI Al e aTuTa i Vas, MDA AN DA N SN S oS AL R M eI I

Hewitt-Savage zero-one law we know that P(Ln¢R) = 0 or 1,
if F has no atoms. The problem is under what conditions
P(Ln¢R) = ] is true. To make it clear, let us introduce
the following notations.

Suppose xl""'xn are given. Split Rd into n sets
an,...,th, such that x ¢ an if and only if xj is the
nearest neighbor of x. Note that an,'j =-1,2,...,0, are
random sets. By the definition of Ln' it is not difficult

to compute out that

n S
Ly=1- I I I(8y=i) f P, (X)F(dX). (1.6)
jml i=l v

nj

It is easy to see that when xl""'xn are given, the terms
under the first summation in (1.6) is a sum of conditionally

independent and bounded random variables, and the coefficients
i
n'
reason to believe that there should be an exponential bound

have expectations not exceeding Thus there is a strong

for P(|Ln-Rlzs). But up to now, as the author knows, the

best result is due to Fritz (1975). It was shown that

P(|L -R|2¢) s ce™P'R (1.7)

under the assumptions that F has no atoms and that Pi(x),

i=1,2,...,8, are a.e.x.F. continuous. There are some

extra examples to support the conjecture that /n in (1.7)
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N could be improved as to n. Also, there is much evidence
to suggest that the assumption of continuity of Pi(x)'s

could be abandoned (see Z. D. Bai, X. R. Chen and G. J.

PLLLLS

Chen (1984)). The main purpose of this paper is to solve
these two problems. In §2, we shall show some lemmas and
the proof of main result will be given in §3. 1In a

further paper, we will give the necessary and sufficient

N conditions for L, + R a.s.

2. SOME LEMMAS

In the sequel, we shall need the following lemmas:
Some of them are known, we will quote them below without
proof. We shall only give the proof for new ones.

Lemma 1. Let £ be a random variable with distribution
F(x) (for convenience we assume that F(x) is left continuous),
and let n be a random variable uniformly distributed over

3 the interval (0,l1l) and being independent of {. Then

z2 3 F(g) + [F(g+0) - F(E)In

»Ta Y2
a*s¥s?s

is uniformly distributed over (0.,1).

The proof is not very difficult and is omitted here.

[ ...;..’-, '.. o

Lemma 2. Let F be a nonatomic probability measure
defined on Rg and A be a measureable set in Rd. Then
for any C ¢ [0,F(A)], there is a measurable set B c A such

that F(B) = C.
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The proof of this lemma can be found in Fritz (1975)

or Loeve (1977) p.1l01l1.
For the need in the sequel, we introduce the concept
;f w-cone. Let O be a point in Rd and A be a measurable
set in Rd. Then A is called an w-cone with vertex O if
for any x, vy ¢ A, ||x-y{| <max(|]o-x||, ||o-y|]).
Lemma 3. For each d, there is a positive integer
m = m(d), depending only upon d, such that Rd can be split
into m disjoint w-cones with a common preassigned vertex.
The proof refers to Fritz (1975).

Let F be a nonatomic probability measure on Rd and

Ac Rd be a measurable subset of positive F-measure. Then,

by lemma 3, we can split Rd into m w-cones with a common

preassigned vertex. Write the intersections of A and each
m

w-cone as Kl""'Km’ with tglxt = A, If F(Kt) = 0,

t=1,2,...,2, and F(Kt) >0, t=2+1,...,m, by lemma 2.

we can split K into 4 + 1 subsets with equal F-measure.

2+1
Drop the original Kl""'K1+l and write the new % + 1 subsets
as Kl""’Kz+l‘ Note that the new Kl""'K1+1 are also w-cones
with the same vertex. Hence we obtain the following lemma.
Lemma 4. Let F be nonatomic, A be of positive F-measure

and O be a point in Rd. Then there are m disjoint w-cones

Kl""'Km’ having the same vertex O and satisfying

. e e . DI TN I N AT T T IC UL A S e e e e T e T e T e e e gt
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. t=l ©
-]
o m
- L F(K) = F(A)
~, t=1
-
.
F(Kt) > O' t = 1’2'0..'m.

gi In the last section, we defined the partition an of

Rd' for random points xl,...,xn. We point out that for

any given points xl,...,xn, even they are not random, we can

similarly define th, j=1,2,...,n. Also, if 1 s j s k s n,
o we always have an c ij.
i Lemma 5, Let XyreoorXy be k points in 4 and F be a
;3 nonatomic probability measure defined on Rd. Suppose that
' F(Viy) =445 > 0, 3 = 1,2,...,k and that X ,,...,X, are iid.
o random points with distribution F. Write Upy = F(Vqy4). Then
» there are mk random variables £4,, J = 1,2,...,k,% = 1,2,...,m,
- satisfying the following conditions,
.'4;. m
:::' l) P(Unjszilajz) = l' J = 1'2':-olk- (2-1)
- 2) 05 €55 S Q40 3= Li2peeeiky 2= 1,2,000m (2.2)

3) P(Ejzzwjl, j =1,2,...,k, £ =1,2,...,m)
ko m n-k
= (1- L T w.,) for 0 s w., S Q.,, (2.3)
jml g1 J% ’ j2 it

where qu, j=1,2,...,k, £ =1,2,...,m, are positive constants,

independent of xk+l""'xn (may depend upon xl""'xk and F),
N m k m k
" and satisfy I g . = q. (of course, L z 9:p = I g, =1).
o g=1 3 3 j=1 g=1 3% jm1 3

-----------------------------------------
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Proof. According to Lemma 4, split ij into m w-cones

of positive F measure, denoted by sz, j=1,2,...,k,

L=1,2,...,m Write q 4 PRy > 00 3 = 12,000k,
L=1,2,e..,m. It is evident that I q., = q., j = 1,2,...,K.
g=1 It 7]
Define

Djo

D]t = ||xj-xt|l' j = 1l200001kl t=k + l,...,n,

Ij2 = {t: k+1 s £t s n, X

ij'le j=12,...,k,

t € sz}l

*{Ijz} = the number of elements of Ijz'

{ min ﬂjl if Ijz#¢.

njl

H. =

tel.
]

jL
« otherwise.

By the definition of w-cone, X ¢ an n sz and xt € Kj

imply that Djo < Djt hence Djo < Hjl

L
. Therefore

Unj = p(Xevnjlxk+1,...,xn)

m

= 121 P(Xeannszlxk+l,...,xn)

m
= I qij(XeanIXeK.

2=1 jerk

k+l,o L) ,Xn)

m
< 251 qjlp(Djo<Hj£lX€Kjl'Xk+l'""xn)

m
= § q,,F.,(H,
TR TALTY

m
= I q., min F.,(D..), (2.4)
g1 Jzteljl jrTTIe

.....................
........................

-
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b

L where sz(u) = P(Dj°<uIXeKjl) and the minimum in (2.4) is

2 one if Ijz = ¢,

-2 Construct n~-k iid. random variables n seee,N_, Which

.4;. k+l n

-, are uniformly distributed over the interval (0.,l) and are

:; independent of xk+l""’xn‘ Define for each t = k + 1,...,n,
- Gy = Fjl(Djt) + Esz(Djt+O)'sz(Djt)]n§' if ttez. (2.5)
. Note that when I, j=1,2,...,k, £ =1,2,...,m, are given

E} and xtesz, Djt has the same conditional distribution as Djo

7 when x:sz given. Thus, by lemma 1, G, is uniformly distributed
;i over (0,1). Also, when Ijl’ j=1,2,...,k, £ =1,2,...,m, are
Eg given, Gt depends only upon xt and Ny hence Gt’ t = k+1,...,0,
~ are conditionally independent. Define

=~ '

Oy q min G if 1. ,#9

jL ttez t je

1‘\ Ejz’ (2.6)

qjl otherwise,
: Evidently, (2.2) follows from (2.6). Also, (2.1) follows
i from (2.4) - (2.6). Finally, we have for 0 s wjz < qu,
j = ,l,Z,...,k, 2- = l’Z,ooo'm'

> P(Ejzzwjz, j?l,z,.-.,k, 281,2,...,31)
- k m N, |

.:: = (n=k): i I q. s

A ko m jml ga1 3%

- it In 2!

jml =l 3 J

o Wi,
.3 x P(Gtijz,ttez, j=1,2,...,k, l-l,Z,...,ml{Ijz})
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k m n k m W n L
=l *
I [T t]|3=1 =17 j=1 2=1 34
j=1 t=1 J%
k m .
=(1- 1 1wk, (2.7)
j=1 2=1

where the summation unspecified in (2.7) runs over all

k m

possibilities that I z n,, =n - k, n;, 20, integers.
: J
j=1 =1

The proof of lemma 5 is completed.

Lemma 6. Let ¢ be an a.e. positive function defined on

the line and

q q
H(ql,...,qk) = J 1,...,J k

¢(wl+... k)dwl...dwk.

o o
Then we have
sup H(ql---qk) = H(d,...,q),
qq*..-+q = kg (2.8)
ql 2 0,...,qk 20

here ¢ > 0 be a given number.

Proof. Note that D = {(ql,...,qk), qp¥eeetq = kg,
qy 2 0/...,q 2 0} is a bounded and closed set and that
H(ql,...,qk) is continuous on D. Hence there exists a point

qz....,qﬁ)en such that

sup H(ql,...,qk) = H(qi,...,qﬁ).
D
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To prove (2.8), we only need to prove
qi = qg = ,,, = qz. By symmetry in qi,...,qﬁ, we only
need to prove that qg = qg. Let

93 % |
p(x) = Io e Io W(x+w3+...+wk)dw3...dwk.

Then

o o
dq, (9

Q(qi,qg) A H(qi,qg,...,qﬁ) = J lJ 2 ¥ (x+y)dxdy.
oc’o

a3+q;
. (o]
- J 172 y(wmin(u,q3,q3,q3+a3-0) du

o

(o) o
d,+g9
< J 172 w(u)min(u.q°+qg-u)du

o
0, 0 0, 0
ql+q2 ql+q2 o0, O -

o, O
- (3 q,+9, d,%q
- I J b(x+y)dxdy = o322, 22,

o o

o Q
q;%9,
3

The quality of (2.9) holds if and only if qisqg =

because y(u) is positive. The proof of lemma 6 is completed.

Lemma 7 (Bennett, 1962, see Hoeffding (1963)). Let

Ul""'U be independent and let EUi = 0, ci = EUi,

n

1 % 2

¢¢ == I of. Suppose that |u.
€

l| sb, i=1,2,...,n. Then

1

1 ° 2,2
P(IH izl Uilze) < 2 exp{-ne“/2(a“+be) }.

(2.9)




12.

v Lemma 8 (Hoeffding, 1963). Let £ ~ B(n,p), the binomial
[~ distribution with parameter n and p. Then for any ¢ > 0,

g 1 2

A P(laﬁ-plzs)SZexp{-ne /(2p+e) }.

3. THE MAIN RESULT
Theorem 3.1. If F, the marxginal distribution of X,
has no atoms, then for any € > 0, there exist constants c¢

and b, depending upon € and the distribution of (9,X), such

- that
E; P(|L -R|2e) s ce PR (3.1)
; Proof. Define'
- T, = p(eafelxl,...,xn) = E(Lnlxl,...,xn). (3.2)

Using the notations defined in §1 and §2, we have

n -
Ly=1- I © I(8;=i) [ P, (x)F(dx) (3.3)
j=1 i=l J v, *t
nj
and '
n S
T =1- I I P,(X,) J P, (x)F(dx) (3.4)
, n j=1 jm1 L3y 3
2 n)
& Hence
> P(ILn-TnIzZSe')
k) :: s n '
S s I p(| z(I(ejsx)-pi(xj»J P, (x)F(dx) |22¢") (3.5)
. i=1  §=l v .t

nj
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Define
(i) & , -
Qy = IV | P;(X)F(dx) s U g JV | F(dx) . (3.6)
nj nj
¢ = {j,an,UanA/n}. ¢§ = {1,2,...,nh\¢ (3.7)
and
k = [6n] (3.8)

where A and 6 are positive constants to be specified later,
and [x] denotes the largest integer less than or equal to

X. By lemma 5 and lemma 6, we have

k | k m
P(Z U _.2e'"}X,,... ) s P(Z L E.,2€")
jm1 D3 1o j=1 g=1 3%

.« .=

= by 31, (Bmy - F T )" T aw
n-k-mk) ! D it : g
o o j=1 =1 jml L=l -
1 1
(n-k) ! mk =k k m )n-k-mk § ?
S—_—_——'—rJ ...J I_(1- 2% z W, dw,
=k=mk)T Jo "*"lg BT gap ey % j=1 p=1 %
mk
- \ ]
s (—né%}{)—.- (2) expl-e’ (n-k-mk)}, (3.9)
k m
where D = {w,_.,j=1,2,...,k,4=1,2,...,m, z LI w,,2¢'} and
13 jm1 g=y 3%
ID is the indicator of the set D.
Let
{ : '}
E = max L U . 2¢ (3.10)
n 1sj <...<j, sn i=1 nlj
O AT FOT R R e e T T AT N T et B O N N e
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We have from (3.9)

k
P(E ) < z P(ZU 2e')
" 1s§y<e..<ipsn iml nJ;

k k
- (k)P(j.]_ nj 2¢') = (k)EP(JEIU Jze lxl,...,xk)

mk

s (sl G expl-¢’ (n-k-mk) ). (3.11)

Applying Stirling's formula and recalling k = [én], we have

. n’
P(E) < ormRy ™.

nomkery T expl-e' (1-8 (m+1))n}

n
< 0678 (mé) "™ (1~ (me1) 5) " (3@ ) 17 yp (- (1-(m+1) &)n}
s exp{-bn}, (3.12)

i where b = % €'(l-(m+1l)S8) and § (0, min(e',E}TI)), being such
that

1ogL 6% me) ™ (1-me1) &) " L") 3 L ev(i-men) ). (3.23)

Here the reason that such § can be chosen is based upon the

fact that when 6 + 0, the left hand side of the above inequality

tends to zero and the right hand side to % e' > 0.

If we choose A > %, then #{¢§} < k, hence we have

e
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p(lz zc(x(ej-i)-pi(xj))Jv P, (x)F(dx) |2e")
jeQn nj
£ P ZcUnjzgt)
jeQn
S P(E)) s exp{-bn}. (3.14)
Hence
P(| z (I(ej-i)-P (xj)) I Pi(x)F(dx)IzZE')
j=1 v
nj
-bn - - '
s e + P(lj:; (1(8y=i) pi(xj))onjlze )
n
= -bn - - ' -
e + EP(lj:; (I(ej i) Pi‘xj’)an|=€ |XyreeerX ) (3.
n

Note that when X,,...,X are given, I(ej?". , 3 = 1,2,...,n

are conditionally independent and P i(xj) r Q and °n depend

nj
only upon xl,...,xn. Hence applying lemma 7, we have

P(Ij:; (I(ej=i) - Pi(xj))onjlze |XqerrraX))
n

= L =i - _E_ .
PUas j:;n(x(ej 1) = By XyNQpglag=¥y,eea X))

e'
2 exp{-n.(—) /2(n* jezo an + vy Ju:a;: an)}

A

n

2 exp{-€'/2(1l+c') max Q j}
JeQ

< 2 expl-(c'/2(1+c')A)n}i2e7PR, (3.16)

> \;. ")
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where n, = #{3n}, and b is a positive constant independent
of n, but in its different appearance, it may take different
value, e.g. this b is different from that b in (3.13).

From (3.5), (3.15) and (3.16), it follows that

P(ILn-TnIZZse') < 4s exp{-bn}. (3.17)
Finally, we shall establish the similar bound for
P(|T -R|23se'). According to Lusin's Theorem, for each i,
i=1,2,...,8, there exists a continuous function 5i(x)

satisfying the following two conditions

a) 0 s Ei(x) < sup P, (x) s 1, (3.18)
X
b) F(A) < §/2, A = {xeRS, P, (x) # §i(x)}, (3.19)

where & is the constant determined by inequality (3.13).
Define

¥ = {jsn, XjeA}.

Then we have

n .
z p.(xj)anlzs )

l
P(|] £
. jll

< P( L Q.2€') s P( L U 2 e')
jey, ™ jev_ nj -

< P(#{Wn} 2 én) + P(En). (3.20)

A L T R A N A .i. »eoce -j
O AL A WV A o e O S SR T S S P, A r}}:.}_\_c



17.
By Hoeffding's inequality (see Hoeffding (1963)), we have
P(#{F_} 2 6n) s 2 expl-n(6 - F(ANZ/(2F(A) + (5 - F(M))))
< 2 exp{-(%)n} = 2 exp{-bnl. (3.21)
(3.21), together with (3.14), yields

n n .
P(|] £ pi(xj)onj -z P.(xj)anlze') < 3 exp{-bnl}. (3.22)

j=1 j=1 *
Define
Hi = J Pi(x)Pi(x)F(dx) . (3.23)
Rd
and
3= | o2
i RdPi (x)F(dx). (3.24)

It is obvious that

lni - B,

| < F(A) < 8/2 < ¢°. (3.25)
On the other hand, using the same approach as in Fritz (1975),
we can prove that

n~ -~

6 _-b
P('jilpi(xj) -H | z2e)s et (3.26)
From (3.22), (3.25) and (3.26), it follows that
n 6, _~bn
- ' ——
P(ljflpi‘xj)an Hil 2 3e') s (3 + 7le 77, (3.27)

s
Recalling that R = 1 - Hi we obtain that
i=1
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18.
P([T -R| 2 35€") s S(3 + gHe ™ (3.28)
(3.17) and (3.28) yield
. P(|L,-R|25Se’) s S(7 + Sp)e”PR, (3.29)
which, together with taking €' = ¢/5S, completes the proof

of Theorem 3.1.
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